Add a black, pointed hat....

About a month ago, a neighbor of ours
brought us a large green "squash of some kind".
Well, it is getting toward the end of October,
and the back of that "squash" is getting rather

CLORD

MAGAZINE, inc

orange. Oh, you didn't know that a squash had coLeTa Sln
a back? Well, this one has a face etched in 93017

its still green front. We're kinda optimistic
that by Ghoul's Day, our ugly duckling (squash)
will turn into a pumpkin (sorry Cinderella).
Then it will be a real Clyde-O-LanternN....

\ ocroBer 1980 |

Fhhhhhh kT hhdhhhhhhhhh XX hhhkdhhdhdhrhhrhrhhhhhkxhhhdddrhddb v hdddhhhhhk

* *
* Side Title Turns Count *
* *
* CTR~-41 CTR-80 *
* *
* hEhk Rk Block 8 Cover 12 & 256 7 & 150 *
* Kk k% Atomic Table 41 & 281 23 & 166 *
* k& k% CIA Adventure 102 & 326 59 & 192 *
* *kk ok Coder (Disk only) 229 & 426 135 & 251 *
%* *
* *
* ** Tiar 12 & 254 7 & 149 *
* F kR Tiar Notes 72 & 300 42 & 177 *
* * & Load 'N' Save 134 & 348 79 & 205 *
* k% Escape 172 & 377 101 & 222 *
* F kK Maze (System Maze /) 225 & 420 132 & 248 *
* *
* *
R R R R R R R R R R R R R R R R E R R R R R E R E R E R R R R E R R R R E R E R R R R R R R E R R R R EEEEE R AR R R R

The Block 8 cover draws kaleidoscopic images on the screen. Actually
there are three or six mirror images drawn (depending on how you look at
it), but it looked 1like eight to me at first, hence the name. Maybe there
are four images...nine...how about five.cssesos

You can list all of the known elements with Atomic Table. Also, the
program will break down a given formula into its basic elements. I wonder
what Coca-Cola is made of...

Did you drop a ruby? Get the CIA on it immediately! 1In CIA Adventure,
you give one or two word commands to direct the operation. Good luck in
getting past the various obstacles in your quest to retrieve the ruby.

And we have just the thing for you CIA types (with a disk system) out
there - Coder! This program takes a BASIC file from the disk and creates a
carbon copy of that BASIC file, only the copy can't be listed to the
screen. You can also decode your previously coded programs. But for those
of you who want to decode Coder.... surprise!

Tiar is one of those programs that thoroughly frustrates any reasonably
stable person. As you all know, programming a computer takes a marginal
amount of logical thinking. Being able to break the problem you want to
solve down into its basic components and then being able to sequentially
step through each component to write executable code takes a logical mind.
But at least you are given the rules (syntax structures) of the language
you are programming in before you start. In Tiar, you are not told the
rules. By logical deduction, you are supposed to figure out what those
rules are. Your goal is to amass a certain number of points, but you are

not told how you can score those points. By logical deduction, you are
supposed to figure out how to score points. You are given a certain set of
commands, but you are not told what those commands do. By logical
deduction, you are supposed to figure out what those commands do.

Had enough? 1If you are observant, you will have seen by now that
following Tiar, there is a little program entitled Tiar Notes. By logical
deduction (where have I heard that before?) you will have assumed that Tiar
Notes contains the keys to unlocking Tiar. You're an optimist. It's true
that you will find a few hints there, but don't expect any great
revelations.

Careful! When you list Tiar, there doesn't seem to be anything logical
about the end of line 170. Well, Mr. Richmond somehow stuck one of his
infamous extra-long lines in there. The end of the line reads something
like '.o..<>A(E2,F2,A(E2,F2,0))THEN@,'. By PEEKing around, the '@,' (which
is not consistent since it sometimes lists as a graphic character or as a
line feed) turned out to be *100'. Editing the line can be hazardous to
the program.

Load 'N' Save is a potentially powerful utility. Say that you are
playing a long game like CIA Adventure, and, after five hours of playing,
you finally got inside the elevator. But now you have to quit because you
are leaving for the weekend. You don't want to leave your computer on, but
you would sure hate to start the game over. If you could save the values
of all the variables onto tape, and then load them back into the computer
on Monday, you could re-initialize CIA Adventure to the point where you
left off. That is what Load 'N' Save allows you to do., Sounds too simple?
There are catches (like it probably won't work with CIA Adventure in
reality).co.

1) Although Load ‘N' Save is a BASIC program, it loads a machine
language routine that must reside permanently in the top of 16K memory.
This means that the program from which you want to save the variables can't
be so big that it uses all of memory. This also means that you can't have
another utility stored in upper memory at the same time.

2) You must know something about the structure of the program that you
want to use Load 'N' Save on. For instance, if you stop the program in the
middle of a subroutine, save the variables off, and then attempt to jump
back into the program right where you left off (after loading the variables
back in), you will get an RG (Return without Gosub) error. This happens
because the location of the place you were supposed to return to was not
saved with the rest of the variables. That location is a system variable
located in an array type structure (called a 'stack® -~ more on that some
other time) that only the system uses. In other words, you must have a
good understanding of programming techniques in order to use Load 'N' Save
on an existing program, or to be able to modify a program so that Load 'N°'
Save will work on it.

Be sure to CLOAD and RUN Load 'N' Save before loading in your BASIC
program (from which you want to have the variables saved or loaded). Note
to disk users: this program will not work with DOS BASIC,

Some of you early subscribers will recognize the game Escape (Chase in
October 1978). If you enjoyed the original, you will probably love this
version (it's FAST). For the uninitiated, Escape puts you in a room full
of crazed robots that blindly seek to do you damage. There are also
electrical fields scattered about the room which tend to give you that
overdone feeling if you touch them. But those fields also tend to scrap
robots. And if the robots touch each other, they get a little
over-exuberant in shaking hands and a pile of rubbish results. It is a

kind of demolition derby in which you want to be the last one running.

This month's system offering will aMAZE you (alright, no more bad
puns... this paragraph). Just to watch it create a maze is worthwhile
>nough. But then you get to find your way out of it. Believe it or not,
-here is a way out from any position inside the maze (test it - I did).
All you have to do to load and run it is: 1) type 'SYSTEM'<enter>, 2)
answer the ?* with 'MAZE'<enter> (Maze now loads), 3) answer the next 2%
with '/'<enter> and you're ready to get lost in the maze. Has anyone seen
the Minotaur lately?

Hey disk users! You can put 'Organ' (from last month's issue) on disk
and run it from disk. Use LMOFFSET if you are using NEWDOS, or TAPEDISK
(begin 7000, end 7700, entry 7000) if you are using TRSDOS, to take the
program from tape and put it on disk. Add the '/CMD' extension to the file
name for convenience (ie: ORGAN/CMD). To make it sound good, you must
disable the clock interrupts. So before running Organ, you must go into
BASIC and type 'CMD"T"', 1If you are using NEWDOS, you can then type
CMD"ORGAN" to run. In TRSDOS, you must then type CMD"S" to get back to the
DOS level. Then you type 'ORGAN' to run. Kudos to George P. Saladino Jr.
for pointing this out.

How many of you got an 'NF IN 980' error from Shopping Spree in last
month's issue? Raise your hands. A majority of you from the look of
things. That means that the first item that you bought was not an item
from your list and then you tried to check out early. Don't ask me how
long it took to find exactly when the error occured, let alone how long it
took to find what caused it. The culprit was line 460, listed below:

460 FORZ=1TOl100:X=PEEK(15100):R#=R#+1:
IFX=0THENNEXTELSEIFX=1THEN8S8OOELSE480

Those of you who know BASIC, after studying this line a while, will
come to the conclusion that this line is syntactically correct. Yet it
causes an error in line 980 -

980 FORZY=1TO500:NEXTZY:FORZZ=1T050:0U0T255,0:0UT255,2:NEXTZZ : NEXTJ

After breaking apart line 980 into separate lines, the 'NEXTJ' turned
out to be baddie. But line 940 had FOR J=1 TO B and no other statement
caused a jump to a line between 940 and 980. So the 'NEXTJ' should have
worked. Now the 'J' was taken off the 'NEXTJ', and when the 'NEXT' was
hit, the program jumped to line 460 (not 940 as it should have had things
been working correctly).

If you look again at line 460, the only FOR loop is 'FORZ=1T0100'.
Well, at least we now know what caused the error - the FOR Z attempted a
match with the NEXT J. But, there is a matching 'NEXT' for the FOR Z in
line 460. Then why did the attempted match occur in the first place?

School's in! Clyde Cload's Institute for Higher Misunderstanding
brings you a quick and mostly incomprehensible course on the BASIC
interpreter.

Let's start at ground zero - the machine. This machine can't read
Latin, English, or BASIC. It can only read and act upon a group of
witches (8 to a group in this machine) which are either on or off. Since
each group of switches can only be arranged on or off in a finite number of
ways, we can associate numbers to each arrangement. For human convenience,
base 8 (octal), base 16 (hex), or base 10 (decimal) is used. When programs
are in this form, they are said to be written in 'machine code' or 'machine
language' (imagine that!).

BASIC is not a machine language. It is a human language. For the
machine to run a BASIC program, it must first be translated into machine
code (which may take more than one translation, but that is another story).
There are essentially two methods of translation:

1) Compiling. The program you wrote in BASIC is run through another
program called a 'compiler'. This compiler matches FORs with NEXTs, GOSUBs
with RETURNs, GOTOs with the correct lines, etc. It does a dozen (million)
other things, then spits out another complete program. You would then run
this 'new' program, which is the machine language translation of your
original program. Our little machines do not have a compiler, although I
suppose you can buy one for the Model I TRS-80 somewhere. The compiled
machine code program will run FAST (really fast!), but it can take 10
minutes or more to compile some programs. So to make one little change in
a program could take a long time since you would have to re-compile the
program afterwards.

2) Interpreting. This is what our machine does. The 'interpreter’
looks at the first line in your BASIC program and translates it. If the
line is completely executable (ie: I=2) it executes it, If it is not fully
executable, it does what it can and sets up pointers and tables for later.
The tables and pointers are used when the line becomes totally executable
(ie: FOR X = 1 TO 100 can't be completely executed until the NEXT X is
found). After translating the first line, the interpreter goes on to the
next line, and so forth.

Since interpreting code is relatively slow, the interpreter in the
TRS-80 is evidently set up to do as little as possible. For instance, if
I=0 and the line 'IF I>0 THEN GOTO 100' is interpreted, the 'THEN GOTO 100°
part of the line won't even be looked at since the 'IPF I>0' is false. Now
let us look at line 460 in Shopping Spree.

The matching 'NEXT' for the 'FORZ=1T0l00' is located after an 'IFX=0'.
Since we know that an error occurs when the first item we pick up is not a
valid item and we then check out early, we can assume that the following
happens (without really knowing what the program does at this point):

Line 460 is interpreted. The ‘FORZ=1T0100' is done first and since it
is not totally executable, table entries and pointers are set up in
anticipation of the 'NEXT'. Next, the value of X is computed (it is not
zero or one) in 'X=PEEK(15100). Then R# is incremented by one in
'R#=R#+1"'. Now the ‘IFX=0' is evaluated and is found false. The
'THENNEXT' is ignored (ahal!), the 'ELSEIFX=1l' is found false, and the
"THENS0OO' is ignored. Finally, 'ELSE480' is done and we are moved up %o
the checkout counter.

We decide to checkout and the receipt is being printed out. Line 980
is now being interpreted. The 'FORZY=1T0500: NEXTZY' is executed
completely. The 'FORZZ=1T050:0UT255,0: OUT255,2:NEXTZZ' also goes by
without a hitch. Then 'NEXTJ' is interpreted and associated with the
'PORZ=1TO100' in line 460 since the 'NEXT' in line 460 was just skipped
over. And an error results.

What really happened? The interpreter got confused! The ‘NEXTJ’
should have been associated with the FOR in line 940. I really don‘t know
why the interpreter blew it, but imbedding a NEXT statement in an
IF-THEN-ELSE construction (as in line 460) scrambled something., 1If
somebody out there is in the know, T would appreciate enlightenment! All
the same, this is a perfect example of how fancy code writing can cause
fancy trouble. Moral: Do it simply!

	081.pdf
	082.pdf
	083.pdf
	084.pdf

